China Best Sales Inlet 20bar Discharge 220bar Flow 1250nm3/H F2 Fluorinated Gas Diaphragm Compressor 12v air compressor

Product Description

Detailed Photos

Inlet 20Bar Discharge 220Bar Flow 1250Nm3/h F2 Fluorinated Gas Diaphragm Compressor

Description&Advantages

Product Descriptions:
High-pressure series compressors, medium-to-high pressure compressors for oil fields, general-purpose piston compressors, oil-free compressors of DW, VW, MZD, SF types, liquefied petroleum gas (LPG) circulation compressors, natural gas and gas bottle filling series compressors, and various types of pressure vessels. We can provide compressors with a discharge capacity ranging from 300 to 12000 nm³/h and discharge pressures from 0.2 to 45 MPa, suitable for compressing air, nitrogen, liquefied petroleum gas, coal gas, natural gas, carbon dioxide, propane, ethylene, ammonia, difluoroethane, and other mediem. With over 600 different models, our products are widely used in urban construction, petroleum, coal, geology, chemical, metallurgy, machinery manufacturing, medical, food and beverage, liquefied gas stations, natural gas stations, and other fields

ASC Compressor Factory are oil-free lubrication reciprocating piston compressors developed in collaboration with the German company CHINAMFG DEMAG. These models are known for their low energy consumption, minimal noise, reduced vibration, high reliability, and easy operation.

Each unit primarily consists of the compressor mainframe, electric motor, common base frame, air system, cooling system, lubrication system, instrument control system, drainage system, and electrical system. All components are generally installed on a single common base frame, which is then mounted on a concrete foundation, making it a fixed-type gas station. The connections between the equipment and the fixing points to the base are detachable, making transportation, installation, operation, and maintenance extremely convenient.

Advantages:
Our products, incorporating technology from Germany’s CHINAMFG Demag companies, exhibit high reliability.  Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.   It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

 

Medium to High Compressor Parameter Sheet
No Model Medium Capacity   Inlet Pressure Outlet Pressure   Rotation Power    Cooling Method
nm3/h  MPa MPa  r/min KW  
1 DW-2.4/(18~25)-50 Raw Gas 2700 1.8~2.5 5 980 160 Water
2 DW-5.5/(13-15)-26 Nitrogen 4500 1.3~1.5 2.6 740 160 Water
3 VW-4.6/52 BOG 250 Atmospheric Pressure 5.2 740 75 Closed loop
4 DWF-7/(2-4)-30 Wellhead Gas 2100 0.2~0.4 3 740 200 Air
5 VWD-3.2/(0-0.2)-40 Biogas 200 0~0.02 4 740 45 Closed loop
6 DW-4/5-41 Exhaust Gas 1200 0.5 4.1 980 160 Water
7 VW-4.1/(36.8-44.7)-
(39.9-49.9)
Regenerated Gas 8865 3.68~4.47 3.99~4.99 980 132 Water
8 2VW-18/0.05-90 BOG 1100 0.005 9 980 250 Water
9 VW-4.8/48-54 Natural Gas 12000 4.8 5.4 980 132 Water
10 VW-2/120 Carbon Monoxide 1200 Atmospheric Pressure 12 740 37 Water
11 VW-2.5/120 Carbon Monoxide 1200 Atmospheric Pressure 12 740 45 Water

High-Pressure Compressor (Pipeline Blowing) Specification Table
No Model Medium Capacity   Inlet Pressure Outlet Pressure   Rotation Power    Cooling Method
m3/h  MPa MPa  r/min W
1 SF-10/250 Air 600 Atm 25 1330 258.5 (Diesel Motor) Air
2 SF-10/150 Air 600 Atm 15 1330 258.5 (Diesel Motor)
3 SF-7.5/250 Air 450 Atm 25 980 160 (Electric Motor)
4 SF-7.5/150 Air 450 Atm 15 980 132 (Electric Motor)
5 SF-8.5/250 Air 510 Atm 15 980 200 (Electric Motor)
6 W-10/60 Air 600 Atm 6 1330 132 (Electric Motor)

High-Pressure Compressor (Oilfield Membrane Nitrogen Generation) Parameter Table
Model Flow Rate Outlet Pressure   Air compressor form and series Form and series of nitrogen booster compressor Drive parameter Power    Membrane Module Qty
nm3/h MPa KW
MZD-300/250 300 25 Screw type single-stage V-type piston three-stage 90KW+55KW 300 4
MZD-300/350 300 35 Screw type single-stage V-type piston four-stage 90KW+55KW 300 4
MZD-300/250-C 300 25 Screw type single-stage V-type piston three-stage TBD234V6 / 4
MZD-300/350-C 300 35 Screw type single-stage V-type piston four-stage TBD234V6 / 4
MZD-600/250 600 25 Screw type single-stage V-type piston three-stage 185KW+132KW 500 8
MZD-600/350 600 35 Screw type single-stage V-type piston four-stage 185KW+132KW 500 8
MZD-600/250-C 600 25 Screw type single-stage V-type piston three-stage TBD234VB / 8
MZD-600/350-C 600 35 Screw type single-stage V-type piston four-stage TBD234VB / 8
MZD-900/250 900 25 Screw type single-stage V-type piston three-stage 250KW+185KW 800 12
MZD-900/350 900 35 Screw type single-stage V-type piston four-stage 250KW+185KW 800 12
MZD-1200/250 1200 25 Screw type single-stage V-type piston four-stage 315KW+250KW 880 16
MZD-1200/350 1200 35 Screw type single-stage V-type piston four-stage 315KW+250KW 880 16
MZD-1500/150 1200 15 Screw type single-stage V-type piston three-stage 440KW+220KW 880 20

Our Factory

Part of Customer Visit

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Customized
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China Best Sales Inlet 20bar Discharge 220bar Flow 1250nm3/H F2 Fluorinated Gas Diaphragm Compressor   12v air compressorChina Best Sales Inlet 20bar Discharge 220bar Flow 1250nm3/H F2 Fluorinated Gas Diaphragm Compressor   12v air compressor
editor by CX 2024-03-27

Natural gas screw compressor

As one of the natural gas screw compressor manufacturers, suppliers, and exporters of mechanical products, We offer natural gas screw compressor and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of natural gas screw compressor.

Recent Posts