Product Description
Features of Towable Twin Diesel Screw Air Compressor For Water Well Drilling Rig Machine Use
1. Towable Twin Diesel Screw Air Compressor For Water Well Drilling Rig Machine adopted CHINAMFG engines;
2. Automatic control and protection system;zmwm02
3. Error free capacity control;
4. Deluxe micro-computer florescence contrlo panel;
5. All weather models for high altitude operations (customization available
for above 5500m high altitude applications by CHINAMFG only);
6. High quality filtration system with safety filters.
Main Parameter of Towable Twin Diesel Screw Air Compressor For Water Well Drilling Rig Machine Use
| Model | Rated Exhaust Pressure | Rated Exhaust Volume |
Oil Content | Diesel Engine | Net Weight | Dimensions |
| (mpa) | (m3 /min) | ppm | kw(hp) | (kg) | (mm) | |
| 42SCY-7 | 0.7 | 4 | ≤6 | 42(65) | 780 | 2110×1500×1620 |
| 58SCY-8 | 0.8 | 7 | ≤6 | 58(80) | 1550 | 3140×1740×1900 |
| 110SCY-8 | 0.8 | 12 | ≤6 | 110(150) | 2480 | 3120×1630×2290 |
| 110SCY-10 | 1 | 12 | ≤6 | 110(150) | 2480 | 3120×1630×2290 |
| 110SCY-10 | 1 | 10 | ≤6 | 110(150) | 2480 | 3120×1630×2290 |
| 110SCY-14.5 | 1.45 | 8.5 | ≤6 | 110(150) | 2480 | 3120×1630×2290 |
| 140SCY-8 | 0.8 | 17 | ≤6 | 140(180) | 3000 | 3650x1700x2040 |
| 138SCY-14.5 | 0.8/1.45 | 12.8 | ≤6 | 140(180) | 3000 | 3350×2060×2350 |
| 139SCY-13 | 1.3 | 15 | ≤6 | 140(180) | 3000 | 3650x1700x2040 |
| 177SCY-14.5 | 1.45 | 15.2 | ≤6 | 179(240) | 3800 | 3720×1970×2550 |
| 178SCY-14.5 | 1.45 | 17 | ≤6 | 179(240) | 3800 | 3720×1970×2550 |
| 180SCY-8 | 0.8 | 20 | ≤6 | 179(240) | 3800 | 3720×1970×2550 |
| 180SCY-14.5 | 1.45 | 17 | ≤6 | 179(240) | 3800 | 3720×1970×2550 |
| 190SCY-16 | 1.6 | 21 | ≤6 | 194(260) | 3800 | 4600x1900x2350 |
| 250SCY-14.5 | 1.45 | 22 | ≤6 | 250(340) | 5500 | 4600x2000x2350 |
| Towalbe Diesel Screw Air Compressor (High Pressure) | ||||||
| Model | Rated Exhaust Pressure | Rated Exhaust volume | Oil Content | Diesel Engine | Net Weight | Dimensions |
| (mpa) | (m3 /min) | ppm | kw(hp) | (kg) | (mm) | |
| 177SCY-17 | 1.7 | 16 | ≤6 | 179(240) | 3760 | 3720×1970×2550 |
| 188SCY-17 | 1.7 | 18 | ≤6 | 191(260) | 3650 | 3720×1970×2550 |
| 191SCY-17 | 1.7 | 18 | ≤6 | 191(260) | 3830 | 3720×1970×2550 |
| 250SCY-17 | 1.7 | 22 | ≤6 | 250(340) | 4800 | 3810x2000x2900 |
| 195SCY-19 | 1.9 | 19 | ≤6 | 194(260) | 3830 | 3720x1970x2550 |
| 260SCY-21 | 2.1 | 22 | ≤6 | 250(340) | 4590 | 4150x2000x2900 |
| 288SCY-22 | 2.2 | 27 | ≤6 | 288(380) | 4940 | 4150x2000x2900 |
| 406SCY-25 | 2.5 | 33 | ≤6 | 400(525) | 6800 | 4600x2250x2500 |
Pictures of Towable Twin Diesel Screw Air Compressor For Water Well Drilling Rig Machine Use
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
Can Screw Compressors Be Used for Air Conditioning?
Yes, screw compressors can be used for air conditioning applications, particularly in larger commercial and industrial HVAC systems. Here’s a detailed explanation:
Screw compressors are a type of positive displacement compressor that can effectively handle large volumes of gas or air. They are known for their high efficiency, reliability, and ability to provide continuous operation. These qualities make screw compressors well-suited for air conditioning systems that require the compression of refrigerant gases to facilitate cooling.
In air conditioning applications, screw compressors are commonly used in two types of systems:
- 1. Chillers: Screw compressors are frequently employed in chiller systems, which are central air conditioning units that cool water or another secondary refrigerant. In chiller-based air conditioning systems, the screw compressor works in conjunction with other components such as evaporators, condensers, and expansion valves to extract heat from the chilled water or secondary refrigerant and provide cooling to the desired space.
- 2. Variable Refrigerant Flow (VRF) Systems: VRF systems utilize multiple individual indoor units connected to a single outdoor unit. These systems can provide simultaneous heating and cooling to different zones within a building. In VRF systems, screw compressors are often used in the outdoor units to compress the refrigerant gas, which is then distributed to the indoor units for heat exchange and cooling.
The advantages of using screw compressors in air conditioning systems include:
- 1. High Capacity: Screw compressors are capable of handling large volumes of gas or air, making them suitable for air conditioning applications that require high cooling capacities.
- 2. Energy Efficiency: Screw compressors can deliver high energy efficiency, especially when equipped with variable speed drives (VSD) that allow the compressor to adjust its speed based on the cooling demand. This leads to energy savings and improved system performance.
- 3. Reliability: Screw compressors are known for their reliability and durability, making them a suitable choice for air conditioning systems that require continuous operation and long service life.
- 4. Smooth Operation: Screw compressors operate with minimal vibration and noise, contributing to a comfortable and quiet air conditioning environment.
- 5. Control Flexibility: Screw compressors can offer control flexibility, allowing for efficient modulation of cooling capacity based on the cooling load. This enables precise temperature control and improves overall system performance.
It’s important to note that screw compressors used in air conditioning systems require proper installation, maintenance, and periodic inspections to ensure optimal performance and longevity. Regular maintenance tasks, such as checking refrigerant levels, cleaning filters, and inspecting compressor components, should be performed in accordance with the manufacturer’s recommendations.
In summary, screw compressors can be effectively used for air conditioning applications, particularly in larger commercial and industrial HVAC systems. Their high capacity, energy efficiency, reliability, smooth operation, and control flexibility make them well-suited for chiller and VRF systems. Proper installation, maintenance, and adherence to manufacturer guidelines are essential for optimal performance and longevity of screw compressors in air conditioning applications.
.webp)
Can Screw Compressors Be Used for Medical Air Supply?
Yes, screw compressors can be used for medical air supply. Here’s a detailed explanation:
Screw compressors are commonly employed in various applications, including medical air supply systems. Medical air is a critical utility in healthcare facilities, used for various purposes such as respiratory therapy, anesthesia, and surgical tools. Here are some key points to consider:
1. Reliability and Efficiency:
Screw compressors are known for their reliability and efficiency. They can provide a continuous and reliable source of compressed air, ensuring a stable supply for medical applications. The rotary screw design allows for smooth and efficient compression, minimizing energy consumption and maximizing system performance.
2. Oil-Free Operation:
In medical applications, it is crucial to ensure the purity of the compressed air. Screw compressors can be designed and certified to provide oil-free air, eliminating the risk of oil contamination in the medical air supply. Oil-free screw compressors incorporate specialized sealing systems and filtration to prevent oil carryover, making them suitable for medical air applications.
3. Air Quality Standards:
Medical air must meet specific air quality standards to ensure patient safety and treatment effectiveness. Standards such as the European Pharmacopoeia (Ph. Eur.) or the United States Pharmacopeia (USP) define the required purity levels for medical air, including limits on particulate matter, moisture content, and microbial contamination. Screw compressors can be equipped with appropriate filtration and purification systems to meet these standards.
4. Integrated Drying and Filtration:
Some screw compressors designed for medical air applications incorporate integrated drying and filtration systems. These systems remove moisture and contaminants from the compressed air, ensuring it meets the required quality standards. Integrated drying systems can include refrigerated dryers, desiccant dryers, or membrane dryers, depending on the specific needs of the medical air supply system.
5. Redundancy and Backup Systems:
Medical air supply systems often require a high level of reliability and continuity. Screw compressors can be configured with redundancy and backup systems to ensure uninterrupted supply. Multiple compressors can be installed in parallel, with automatic switching mechanisms to maintain supply in case of a compressor failure or maintenance activities.
6. Monitoring and Alarms:
Modern screw compressors used in medical air supply systems often feature advanced monitoring capabilities. They can continuously monitor and record key parameters such as pressure, temperature, and system performance. Alarms and alerts can be configured to notify operators or maintenance personnel in case of abnormal conditions or potential issues with the compressor.
7. Compliance with Standards and Regulations:
When using screw compressors for medical air supply, it is essential to comply with relevant standards and regulations. These may include medical device regulations, electrical safety standards, and guidelines specific to medical gas systems. Compliance ensures that the medical air supply system meets the necessary safety and quality requirements.
In summary, screw compressors can be used for medical air supply, providing reliable and efficient compressed air for various medical applications. With their reliability, oil-free operation, adherence to air quality standards, integrated drying and filtration capabilities, and the ability to incorporate redundancy and monitoring features, screw compressors are well-suited for medical air supply systems in healthcare facilities.
.webp)
How Do Screw Compressors Compare to Piston Compressors?
Screw compressors and piston compressors are two common types of compressors used for various applications. Here’s a detailed comparison between these two types:
1. Working Principle:
Screw Compressors: Screw compressors use intermeshing rotors (usually a male and female rotor) to compress air or gas. The rotors rotate in opposite directions, creating compression chambers that gradually reduce in volume, compressing the air or gas. Piston Compressors: Piston compressors, also known as reciprocating compressors, use a piston and cylinder arrangement to compress air or gas. The piston moves back and forth within the cylinder, creating compression by reducing the volume of the chamber.
2. Continuous vs. Intermittent Compression:
Screw Compressors: Screw compressors provide continuous compression, which means they can deliver a steady flow of compressed air or gas without pulsations. The compression process is smooth and continuous, resulting in less vibration and noise. Piston Compressors: Piston compressors provide intermittent compression due to the reciprocating motion of the piston. The compression process is characterized by pulsations, resulting in pressure fluctuations and higher vibration levels compared to screw compressors.
3. Efficiency:
Screw Compressors: Screw compressors are known for their relatively high efficiency. They can achieve higher isothermal and adiabatic efficiency compared to piston compressors. The smooth and continuous compression process in screw compressors minimizes energy losses and heat generation, resulting in improved efficiency. Piston Compressors: Piston compressors have lower overall efficiency compared to screw compressors. The reciprocating motion of the piston leads to energy losses due to friction, heat generation, and pressure pulsations. These factors can reduce the efficiency of piston compressors, especially at higher compression ratios.
4. Size and Portability:
Screw Compressors: Screw compressors are generally more compact and require less space compared to piston compressors of similar capacity. They have a simpler design with fewer moving parts, making them relatively lightweight and easier to install. Screw compressors are often mounted on a skid or integrated into compact packages, offering convenient portability. Piston Compressors: Piston compressors are typically larger and bulkier compared to screw compressors of similar capacity. They have more complex designs with multiple moving parts, including pistons, connecting rods, and valves. The larger size and weight of piston compressors make them less portable and require more installation space.
5. Maintenance and Service:
Screw Compressors: Screw compressors generally require less maintenance compared to piston compressors. They have fewer moving parts, reducing the chances of wear and tear. Screw compressors often have longer service intervals and lower maintenance costs. However, proper lubrication and regular inspections are still necessary to ensure optimal performance and efficiency. Piston Compressors: Piston compressors require regular maintenance due to the higher number of moving parts. Components such as pistons, rings, valves, and bearings may require more frequent inspections, lubrication, and replacements. Maintenance costs and service intervals for piston compressors are typically higher compared to screw compressors.
6. Noise and Vibration:
Screw Compressors: Screw compressors operate with lower noise and vibration levels compared to piston compressors. The continuous and smooth compression process in screw compressors results in reduced vibrations and quieter operation, making them suitable for noise-sensitive environments. Piston Compressors: Piston compressors can generate higher noise levels and vibrations due to the reciprocating motion of the piston and the pulsations during compression. Additional measures, such as sound insulation and vibration dampening, may be required to minimize noise and vibration in piston compressors.
Both screw compressors and piston compressors have their advantages and disadvantages depending on specific application requirements. Screw compressors are favored in applications that demand continuous and efficient compression with minimal pulsations and lower noise levels. Piston compressors are suitable for applications that require intermittent compression, lower initial investment, and simplicity. Factors such as desired flow rate, pressure range, operating conditions, and cost considerations play a crucial role in selecting the appropriate compressor type for a given application.


editor by CX 2024-02-17